

Our Future Generation

City of Columbia

- Municipal Population of 110,000
- Significantly to ties to education
 - University of Missouri
 - Columbia College
 - Stephens College
- Full Service City
 - Transportation (Airport, Rail Spur)
 - Water, Wastewater, Solid Waste Services
 - Electricity

City of Columbia

- Municipal Population of 110,000
- Significantly to ties to education
 - University of Missouri
 - Columbia College
 - Stephens College
- Full Service City
 - Transportation (Airport, Rail Spur)
 - Water, Wastewater, Solid Waste Services
 - MUNICIPAL ELECTRIC UTILITY

Columbia Water and Light

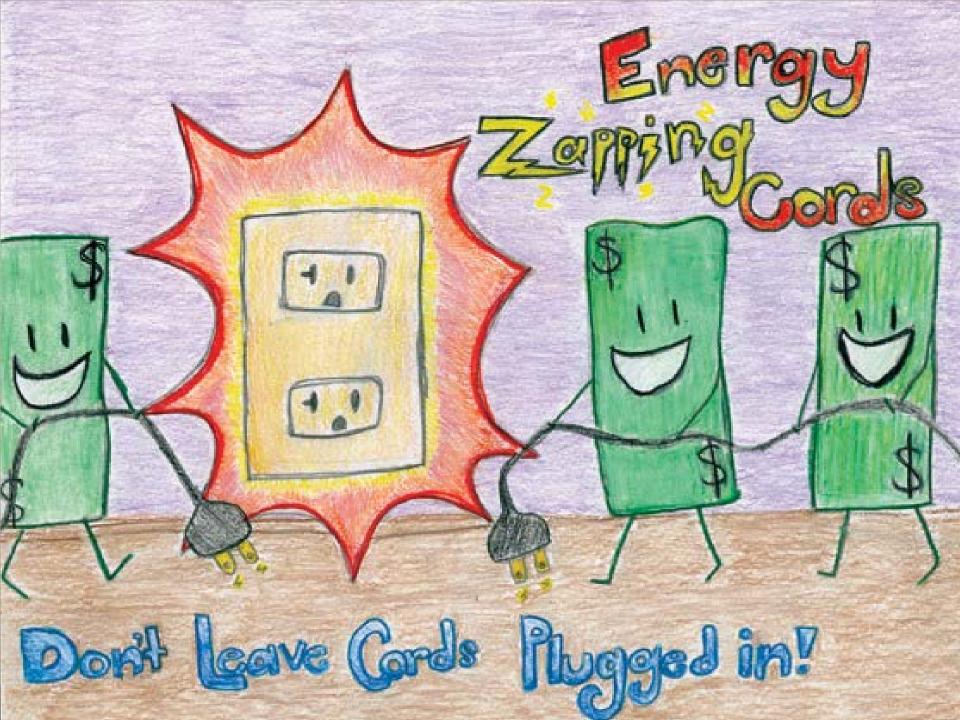
- Municipally owned utility,
- Governed by City Council,
- Providing programs that reflect the community we serve

Columbia Water and Light

- Municipally owned utility,
- Governed by City Council,
- Providing programs that reflect the community we serve

CWL Educational Programming

SCHOOL PARTNERSHIP PROGRAMS


- Energy Efficiency Calendar Contest
- Saturday Science
- Energy Challenge / Energy Choices

DIRECT CUSTOMER PROGRAMS

- Cable Channel 'Conservation Tips'
- Adult Education Programs
 DIY Weatherization Class
 Energy 'Hat' Certification Series

2012 Columbia Water & Light Calendar compliments of your hometown utility

SATURDAY SCIENCE Hands On Activity

SATURDAY SCIENCE Topic Related to Business

SATURDAY SCIENCE ~ 100 students each year

ENERGY CHOICES

- Teaches 7th grade science students how to measure energy used in their home shower and what it cost
- Reaches 1300 students annually
- Takes two class periods:
 - Introductory Presentation

 Lab with simulated shower
- Involves 12 15 utility staff to teach lab

ENERGY CHOICES Introductory Presentation

ENERGY CHOICES — Introductory Presentation

ENERGY CHOICES — Lab BTU Demonstration

ENERGY CHOICES Lab Worksheet

ENERGY AND YOUR SHOWER

How much energy do you use in your shower? How much does it cost?

1	Han	much	did	tha	water	ant	heated?
1.	пом	шиси	шu	uic	water	get	neateur

 $(Temp\ Increase = Temp\ (^{\circ}F)\ Shower\ Water - Temp\ (^{\circ}F)\ Incoming\ Water)$

Shower Temperature

Cold Temperature

Calculate

oF

oF

Use this answer in Sec 3 below

2. How much water was used (in pounds of water)?

(Weight (lbs) = Flow Rate (Gal per Min) X Density (lbs per gal) X Time of Shower (Min))

Flow Rate
Water Density (Pounds per Gal) X 8.3 Gallons per Minute
Pounds per Gallon
Calculate Pounds per Minute
Time of Shower (minutes) X Minutes

Calculate = Use this answer in Sec 3 below

ENERGY CHOICES

Flow Rate		Gallons per Minute
Water Density (Pounds pe	er Gal) X	8.3 Pounds per Gallon
Calculate	>>= ^r	Pounds per Minute
Time of Shower (minutes	s) X	Minutes
Calculate	> =	Use this answer in Sec 3 below
(BTU =	= Temperature Inc	rease X Pounds of Water)
(BTU =	Temperature Inc	rease X Pounds of Water)
		rease it i dulius of water)
Temperature Increase		°F (Your answer in Section 1 above)
Temperature Increase Weight of Water		°F (Your answer in Section 1 above)
		°F (Your answer in Section 1 above)
Weight of Water Calculate	X	Pounds (Your answer in Section 1 above) Pounds (Your answer in Section 2 above)
Weight of Water Calculate 4. Electric Energy needed	X	Pounds (Your answer in Section 1 above) Pounds (Your answer in Section 2 above) BTUs of energy used for the shower Water - (Kilowatt Hours, KWH)
Weight of Water Calculate 4. Electric Energy needed	X	Pounds (Your answer in Section 1 above) Pounds (Your answer in Section 2 above) BTUs of energy used for the shower Water - (Kilowatt Hours, KWH)

ENERGY CHOICES — Lab Shower Measurement

Customer Direct Programs - BOC

CONSERVATION TIPS

ADULT EDUCATION

EDUCATIONAL CONSIDERATIONS

- Utilities, as well as the nation, needs smart consumers
- Schools are by far the most effective way of creating smart energy customers
- Utilities should be much more involved in curriculum development at the state level
 - Educational programming in schools require a long term vision

EMPOWER PLANTS

